G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.

نویسندگان

  • Makoto Tachibana
  • Kenji Sugimoto
  • Masami Nozaki
  • Jun Ueda
  • Tsutomu Ohta
  • Misao Ohki
  • Mikiko Fukuda
  • Naoki Takeda
  • Hiroyuki Niida
  • Hiroyuki Kato
  • Yoichi Shinkai
چکیده

Covalent modification of histone tails is crucial for transcriptional regulation, mitotic chromosomal condensation, and heterochromatin formation. Histone H3 lysine 9 (H3-K9) methylation catalyzed by the Suv39h family proteins is essential for establishing the architecture of pericentric heterochromatin. We recently identified a mammalian histone methyltransferase (HMTase), G9a, which has strong HMTase activity towards H3-K9 in vitro. To investigate the in vivo functions of G9a, we generated G9a-deficient mice and embryonic stem (ES) cells. We found that H3-K9 methylation was drastically decreased in G9a-deficient embryos, which displayed severe growth retardation and early lethality. G9a-deficient ES cells also exhibited reduced H3-K9 methylation compared to wild-type cells, indicating that G9a is a dominant H3-K9 HMTase in vivo. Importantly, the loss of G9a abolished methylated H3-K9 mostly in euchromatic regions. Finally, G9a exerted a transcriptionally suppressive function that depended on its HMTase activity. Our results indicate that euchromatic H3-K9 methylation regulated by G9a is essential for early embryogenesis and is involved in the transcriptional repression of developmental genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automethylation of G9a and its implication in wider substrate specificity and HP1 binding

Methylation of lysine residues on histones participates in transcriptional gene regulation. Lysine 9 methylation of histone H3 is a transcriptional repression signal, mediated by a family of SET domain containing AdoMet-dependent enzymes. G9a methyltransferase is a euchromatic histone H3 lysine 9 methyltransferase. Here, G9a is shown to methylate other cellular proteins, apart from histone H3, ...

متن کامل

Drosophila G9a is a nonessential gene.

Mammalian G9a is a euchromatic histone H3 lysine 9 (H3K9) methyltransferase essential for development. Here, we characterize the Drosophila homolog of G9a, dG9a. We generated a dG9a deletion allele by homologous recombination. Analysis of this allele revealed that, in contrast to recent findings, dG9a is not required for fly viability.

متن کامل

Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells.

Dimethylated histone H3 lysine 9 (H3K9me2) is a critical epigenetic mark for gene repression and silencing and plays an essential role in embryogenesis and carcinogenesis. Here, we investigated the effects of hypoxic stress on H3K9me2 at both global and gene-specific level. We found that hypoxia increased global H3K9me2 in several mammalian cell lines. This hypoxia-induced H3K9me2 was temporall...

متن کامل

H3K9 methyltransferase G9a and the related molecule GLP.

The discovery of Suv39h1, the first SET domain-containing histone lysine methyltransferase (HKMT), was reported in 2000. Since then, research on histone methylation has progressed rapidly. Among the identified HKMTs in mammals, G9a and GLP are the primary enzymes for mono- and dimethylation at Lys 9 of histone H3 (H3K9me1 and H3K9me2), and exist predominantly as a G9a-GLP heteromeric complex th...

متن کامل

Inhibition of H3K9 Methyltransferase G9a Repressed Cell Proliferation and Induced Autophagy in Neuroblastoma Cells

Histone methylation plays an important role in gene transcription and chromatin organization and is linked to the silencing of a number of critical tumor suppressor genes in tumorigenesis. G9a is a histone methyltransferase (HMTase) for histone H3 lysine 9. In this study, we investigated the role of G9a in neuroblastoma tumor growth together with the G9a inhibitor BIX01294. The exposure of neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 16 14  شماره 

صفحات  -

تاریخ انتشار 2002